Mathematics for Approximations
ความเข้มข้นของคอร์ส :
ในการสร้าง machine learning เพื่อพยากรณ์ขอมูลต่าง ๆ หรือค้นหาตัวเลือกที่เหมาะสมในการ ทํางานหนึ่ง ๆ นั้น มีแก่นหลักที่สําคัญอย่างหนึ่งคือการประมาณฟังก์ชัน (function approximation) ซึ่งหมายถึงการหาฟังก์ชัน ที่อธิบายความสัมพันธ์ของตัวแปรต่าง ๆ ด้วยข้อมูลที่เรามีโดยแนวคิดนี้ ได้นำไปสู่เรื่องของ neural network เพื่อสร้างฟังก์ชันที่อธิบายความสัมพันธ์ที่ต้องการ ในปัจจุบนั เราเห็นได้ทั่วไปว่ามันทํางานได้อย่างดีแต่เมื่อเราวิเคราะห์ให้ลึกลงไปแล้ว จะเห็นว่ายังมีคำถามต่าง ๆ ที่น่าสนใจ เช่น
- เราใช้หลักการใดเพื่อสื่อถึงความใกล้เคียง (หรือประสทธิภาพ) ของการประมาณ
- เรามั่นใจได้อย่างไรว่าเครื่องมือที่มีอยู่จะพาเราไปถึงฟังก์ชันที่เหมาะสมได้เสมอ
- เราจะพัฒนาเครื่องมือต่อไปอย่างไร และมีข้อจํากัดอะไรบ้างที่ต้องคํานึง
ในคอร์สนี้จะนําผู้เรียนไปทําความเข้าใจทฤษฎีขั้นสู งทางคณิตศาสตร์เพื่อวิเคราะห์เครื่องมือต่าง ๆ ที่เกี่ยวข้องกับการประมาณฟังก์ชัน เพื่อให้เกิดแนวคิดเชิงลึกทสามารถมองเห็นข้อดีข้อจํากัด และแนวทางการพัฒนาเครื่องมือในการประมาณฟังก์ชันได้
เรื่องราวที่น่าสนใจในคอร์ส:
- เครื่องมือต่างๆ ที่เกี่ยวข้องกับการประมาณฟังก์ชัน
Taylor Series / Fourier Series / Radial Basis Function
- ทฤษฎีขั้นสูงทางคณิตศาสตร
- Linear Algebra เพื่อการวิเคราะห์เชิงพีชคณิตของฟังก์ชัน
- Topology เพื่อการวิเคราะห์ระยะห่างของฟังก์ชันต่างๆ รวมถึงรูปร่างของข้อมูล
สิ่งที่ได้จากคอร์สนี้:
เข้าใจเครื่องมือทางคณิตศาสตร์ขั้นสูง และนําไปสู่การเข้าใจประสทธิภาพและข้อจํากัดของการประมาณ ฟังก์ชันต่าง ๆ รวมถึงสามารถสร้าง machine learning แบบใหม่ได้
ความตั้งใจของเรา:
TAUTOLOGY เรามุ่งมั่นที่จะสร้าง Expert ไม่ว่าจะเป็นด้าน AI, Programming หรือ Mathematics ดังนั้นเราอยากให้ผู้สมัครทุกคน ตั้งเป้าว่าต้องการที่จะเป็น Expert และร่วมกันสร้างคอร์สที่มีบรรยากาศการเรียนที่คึกคัก มีไฟที่ลุกโชนตลอดช่วงเวลาการเรียนการสอน และเราเองก็สัญญาว่า “จะทุ่มเททั้งหมดที่เรามี เพื่อสร้างคุณให้เป็น Expert ให้ได้”
รับรองเลยว่าถ้าคุณจบหลักสูตรคุณจะเป็นหนึ่งใน Expert ด้าน AI อย่างเเน่นอน !
Course Agenda
**มี Exercises และ Discussions ในทุก ๆ บท
สิ่งที่นักเรียนควรรู้มาก่อน
– เมทริกซ์
– แคลคูลัส
Instructor
อาจารย์ณัฐพล สนพะเนาว์ | นักวิชาการอิสระ